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Abstract
An addition rule of impure density operators, which provides a pure state
density operator, is formulated. Quantum interference including a visibility
property is discussed in the context of the density operator formalism. A
measure of entanglement is then introduced as the norm of the matrix equal
to the difference between a bipartite density matrix and the tensor product of
partial traces. Entanglement for arbitrary quantum observables for multipartite
systems is discussed. Star-product kernels are used to map the formulation of
the addition rule of density operators onto the addition rule of symbols of the
operators. Entanglement and nonlocalization of the pure state projector and
allied operators are discussed. Tomographic and Weyl symbols (tomograms
and Wigner functions) are considered as examples. The squeezed states and
some spin states (two qubits) are studied to illustrate the formalism.

PACS numbers: 03.65.Ud, 02.40.Gh, 03.65.Ta, 03.65.Sq

1. Introduction

The superposition principle of quantum states plays a key role in physical phenomena such
as interference of matter waves [1]. Wave properties of electron are connected with the
de Broglie wavelength expressed in terms of particle momentum [2]. These properties
are naturally described by a wavefunction associated with the particle’s quantum state and
obeying the Schrödinger equation [3]. For a system with several degrees of freedom, the
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possibility of considering two subsystems—the first one connected with some degrees of
freedom and the second with the rest of the degrees of freedom, respectively, the superposition
principle provides a construction of entangled states [4]. Discussing two subsystems of a given
system implies the physical possibility of measuring characteristic properties distinguishing
the subsystems.

Entangled states are those which are constructed as a superposition of states, each of
which has the wavefunction expressed as a product of wavefunctions depending on different
degrees of freedom. The mixed states of quantum systems are described by the density
operator [5]. The superposition principle of pure quantum states has been formulated in [6–8]
in terms of a new addition rule of the density operators. This addition rule corresponds to
a purification procedure of a mixed quantum state obtained by the standard addition rule
of the density operators. The relation of the purification procedure to reconstructing the
entanglement structure of the mixed state of a bipartite system has been preliminarily discussed
in [8].

Various notions of measure of entanglement were suggested in [9–13]. All these measures
are related to some operators associated with a bipartite quantum system. The aim of our work
is to give the new addition rule of density operators describing the superposition of impure
density matrices, and this analysis generalizes the results of [6–8] where the coherent addition
rule of pure density operators was formulated. We also define the measure of entanglement
of bipartite and multipartite quantum systems considering intrinsic properties of the density
operator describing the state.

Since the density operators can be considered using different representations for their
symbols, such as Wigner function [14], Husimi–Kano function [15, 16] as well as singular
quasidistribution [17, 18], we discuss the addition rule of the density operators in terms of the
addition rule of their symbols. To do this, we discuss the star-product of the operator symbols
(see, for example, [19–23]). We also consider the case of density operator representation
by a standard tomographic probability distribution, which is used to give a ‘probability’
formulation of quantum mechanics [24]. We also give the formulation of both aspects of
the superposition principle, namely, the coherent addition of impure density operators and
measure of entanglement in terms of the star-product quantization procedure.

The paper is organized as follows. In section 2, the basic ideas of the construction of the
purification procedure and measure of entanglement are described. In section 3, the review of
the addition rule of pure density operators is presented including the presence of a visibility
parameter. In section 4, a new formula for the purification of the sum of impure density
operators is obtained. In section 5, a short review of the star-product formalism is given. The
purification formula for a symbol for an arbitrary kind of density operator which is obtained
by the purification of the sum of the symbols of impure density operators is obtained in
section 6. The example of the Wigner function addition rule in terms of the star-product
kernel is presented in section 7. The addition rule of tomographic symbols is considered
in section 8. In section 9, the notions of entanglement and measure of entanglement are
discussed in terms of intrinsic properties of the density operator of a composite system, while
in section 10 a notion of entanglement is introduced for other observables. The example of
two qubits is considered in section 11. A measure of entanglement of multimode squeezed
states is presented in section 12. A purification procedure for the separable density matrix
is discussed in section 13. In section 14, the role of the fiducial projector used to formulate
the superposition principle in terms of density operators is considered. In the conclusions
(section 15) some perspectives are discussed, while in the appendix we give the proof of the
theorem that for pure state ρAB of the bipartite system AB, the eigenvalues and ranks of
reduced density operators ρA and ρB are equal.
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2. General ideas

The notion of dynamical variables generating an algebra of observables and the notion of states,
which are dual to this algebra, are common to both classical dynamics and quantum dynamics;
but in quantum dynamics the operators generating transformations form a noncommutative
vector space while the classical algebra of dynamical variables is commutative. Since every
true representation (realization) of a commutative algebra is one dimensional, this is no longer
true for a noncommutative algebra. This has the immediate consequence that while one
can have states in which all dynamical variables have unique values in classical dynamics,
this is not so in quantum dynamics. We have fundamental states in quantum dynamics in
which all but a (commuting) set of variables have definite (dispersion-free) values for which
other dynamical variables have a distribution of values. In the case where the eigenstates are
continuous, this finds expression in generalized uncertainty relations [25–28]. The generalized
uncertainty relations exist also for discrete observables such as spin (see, e.g., [28]).

Classical states may be associated with distributions in phase space (that is, they have
distributions in values for all dynamical variables) of which the extremal (pure) states are
points in phase space (their distributions correspond to Dirac delta functions or Kronecker delta
matrices for the fundamental dynamical variables). In contrast, the quantum states are linear
functionals on the dynamical variables which map nonnegative operators into nonnegative
numbers. A linear distribution that can be expressed as a convex combination (sum or
integral) of other appropriate ones can be made up of extremal linear functionals which cannot
be so decomposed. These extremal states are the ‘pure states’ of a quantum system.

If all quantum states had distributions for some set of dynamical variables, how can we
combine them to get dispersion-free states for these dynamical variables? This depends on the
characteristic quantum property of superposition of states. Thus, for example, in interference
we compose two pure states to form a new pure state. In terms of states considered as linear
functionals, the natural process is to generate convex linear sums which are not pure states.
But processes such as interference, diffraction and composition of light polarizations need a
new procedure.

An alternate formalism suitable for incorporating this composition law is given by the
vector (Hilbert) space formalism—with each pure state we associate a vector (and its dual
vector), and the expectation values are obtained by the dynamical variables acting on the state as
linear operators, and forming the scalar product with the original dual. Real classical variables
have their counterparts in self-adjoint linear operators and their expectation value in any state
is real. Moreover, positive operators (nonnegative operators) have nonnegative expectation
values. Since vectors permit linear combinations (over the field of complex numbers),
superposition of states and interference are naturally explained. Since the sesquilinear tensor
product of the vector and its dual is a linear functional, this can be compared with the formalism
in terms of linear functionals. But the only linear functionals obtained in a sesquilinear
form (outer product of a vector and its dual) are extremal. To get a full correspondence
with the linear functional formulation, we should form convex combinations of such outer
products. Density matrices (nonextremal states) are convex combinations of bilinears in the
vectors.

Since the sesquilinear forms (outer products) of states constitute pure states, we see that
every ‘state vector’ corresponds to an extremal linear functional, which may be treated as a
linear operator in the vector space, we should identify mixed states as nonextremal states of the
convex set of states. But the correspondence of a state vector and its pure density operator is
not one-to-one. The von Neumann ‘measurement’ is a projector to an eigenstate of a particular
self-adjoint dynamical variable. (In the case the spectrum is continuous, von Neumann
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prescribes a nested family of spectral projections.) The prescription may be viewed as
imparting a measure on the spectrum of the operator representing the dynamical variable.

A generalization of this protocol is called POVM (positive operator-valued measure). A
von Neumann measurement results in a pure state of the system (or more generally a density
matrix in the eigenspace of the operator). But a POVM may result in a mixed density matrix.
The entire set of vectors {ψ eiθ } corresponds to a unique extremal state

ρ = ψψ†.

This extremal operator is idempotent, self-adjoint (of trace class) and satisfies

ρ2 = ψψ†ψψ† = ψψ† = ρ

since ψ†ψ = 1 for normalization. This equivalence class {eiθψ} is identified as a ray—so
extremal density matrices correspond one-to-one to rays in the vector (Hilbert) space. Rays
do not constitute a vector space. Considered as a linear operator, since ρ2 = ρ and
Trρ = ψ†ψ = 1, ρ is a projector of rank 1. So extremal states are the projectors associated
with unique rays. A mixed state is a probabilistic (nonnegative normalized linear) sum of
projectors corresponding to the sum of definite rays with definite probabilities, which may be
chosen to be mutually orthogonal.

In forming a superposition of two vectors, their relative phases are important. So the rays
by themselves are insufficient. They suffice to form mixtures. The question arises as to how
to work with the projectors and yet get a superposition with definite (relative) phases within
the formalism of density operators, either pure or mixed.

This is accomplished using the method of ‘purification’ of a nonextremal state. Since
there are many possible superpositions, we must have purification of an impure density to any
of those states. This is accomplished by using a suitable fiducial projector; the choice of this
projector determines the phases (or rather phase differences). We show that there are choices
of the fiducial projector that can give any of the superpositions and that, even with one such
superposition, the fiducial projector can be chosen amongst a continuous set of projectors.

Having accomplished ‘purification’ we turn to another characteristic property of the
quantum system, namely, ‘quantum entanglement’. If we have a composite system, say AB,
composed of two subsystemsA and B, the generic states ofAB contain information that is not
obtained by considering the states of the subsystems. These may be referred to as nonlocal
correlations between the subsystemsA and B, which cannot be attributed to causal connections.
(We have processes which have a significant relationship that cannot be accounted for causally;
somewhat like the notion ‘synchronicity’ by Jung [29].) Schrödinger pointed out this as a
characteristic property representing a quantum system.

We can have correlations between dynamical variables measured in subsystems in classical
dynamics. In a pure classical state, this automatically gives pure states with definite values
for the subsystem variables. But in the quantum system the situation is entirely different. A
general pure state of the composite system gives impure states of the subsystems. In this case,
the systemsA and B are ‘entangled’. For example, the singlet state of two spin-1/2 (particles)
is entangled. Any spin component of the combined system AB gives a zero expectation
value (the singlet is total spin-0), the individual particles are completely unpolarized—any
spin component has zero expectation value. Yet there is a definite correlation—if one spin is
‘down’, the other is ‘up’ (and vice versa) with respect to any direction.

We recognize that if an entangled pure state is considered as a state of two subsystems
A and B, they could be mixed with the same rank but with corresponding eigenvalues
and eigenprojectors. So the problem of recovering the original pure state from the two
mixed (impure) states of the subsystems involves the restoration of nonlocal phase relations,
characteristics of entangled states. We have evolved a method of restoring the pure state
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using an entangled fiducial projector. However, in this case, the restoration can be done if the
subsystems have density matrices of the same rank and same eigenvalues.

We may also recognize that operations on an entangled pure state may lead to an
unentangled (Kronecker product) state for the composite system which remains pure when
restricted to either subsystem. For example, if we act on the singlet state with the operator of
the difference of the two spins, we can obtain a triplet state which may be unentangled. The
point is that the operator acting as the difference of the spins is itself ‘nonlocal’ in that it acts
on both the subsystems together. Similarly, we can take an unentangled pure state such as
the ±1 states for the total spin-1, and an entangled pure state can be obtained by either acting
with some component of the difference of spins on the singlet state, or by a spin operator
antisymmetric in the two spins on the entangled triplet state. Here again the operator has
the ability to entangle. We shall make use of this property in generating entanglement. The
entanglement and the relative phases are implicit in the fiducial projector chosen.

3. Pure state addition

In [6–8], the rule to add two pure states determined by their density operators ρ1 and ρ2, which
are projectors, was formulated. This rule corresponds to superposition of the state vectors ψ1

and ψ2. This superposition of vectors is a standard tool to describe the quantum phenomenon
of interference. The interference pattern is sensitive to the relative phase of the two vectors.
To describe the relative phase, a fiducial projector P0 was used. By means of the fiducial
projector, the quantum interference can be described in terms of operators only without using
the state vectors. The addition law of two orthogonal states reads (see [6–8] where the addition
formula was written in a slightly different form)

ρ = p1ρ1 + p2ρ2 +
(ρ1P0ρ2 + h.c.)

√
p1p2√

Tr(ρ1P0ρ2P0)
(1)

where positive probabilities (numbers p1 and p2) satisfy the normalization relation

p1 + p2 = 1. (2)

One can check that the density operator (1) is a projector, i.e.

ρ2 = ρ ρ† = ρ Trρ = 1 ρiρρi = piρi (i = 1, 2) (3)

if ρ1, ρ2 and P0 are projectors.
We consider the case ρ1ρ2 = 0 and P0ρ1 �= 0 and P0ρ2 �= 0.
The composition law (1) can be interpreted as the purification of the impure density

operator

ρim = p1ρ1 + p2ρ2. (4)

Nevertheless, the real meaning of the ‘purification’ consists of the statement that for two given
orthogonal projectors and a given fiducial one which is not orthogonal to the given projectors,
sum (1) is again a projector. Relation (1) can be extended to describe the purification procedure
for the impure density operator of the form

ρim =
∑
k

pkρk (5)

where projectors are such that ρkρm = 0 (k �= m) and positive probabilities pk satisfy the
normalization condition∑

k

pk = 1. (6)
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Summation in (5) and (6) can be considered as a summation over a finite set of indices k or
over an infinite one for the system with an infinite number of states. The generalization of (1)
provides the purified density operator

ρ =
∑
k,j

√
pkpj

ρkP0ρj√
Tr(ρkP0ρjP0)

. (7)

Formula (1) can also be extended to take into account that there is a visibility parameter γ [8],
a characteristic of the interference pattern with 0 � γ � 1. Equation (1) is generalized to the
form

ρ = p1ρ1 + p2ρ2 + γ
√
p1p2(ρ1P0ρ2 + h.c.)√

Tr(ρ1P0ρ2P0)
. (8)

For γ = 1, equation (8) reduces to equation (1).
For γ = 0, one has the impure state (4).
Thus, the visibility parameter γ is a characteristic of completeness of the purification

procedure of the density operator or of the degree of decoherence of the initial pure
superposition state (1). In the case of (1) or (8), we have ρkρρk = pkρk (no sum on k).

Let us now consider two density operators of quantum states which are pure nonorthogonal
states. In this case, one has a normalization constant and the purification formula is

ρ =
[
p1ρ1 + p2ρ2 +

√
p1p2(ρ1P0ρ2 + h.c.)√

Tr(ρ1P0ρ2P0)

]
N−1. (9)

The normalization constant N reads

N = 1 +
2
√
p1p2 Re(Tr(ρ1P0ρ2))√

Tr(ρ1P0ρ2P0)
. (10)

4. Impure state addition

We discuss now the addition rule of two mixed states.
In the case of two impure states ρ1 and ρ2, their sum can be decomposed in terms of

orthogonal projectors Rn (i.e. satisfying RnRm = δnmRn):

p1ρ1 + p2ρ2 =
∑
n

ωnRn
∑
n

ωn = 1 ωn � 0. (11)

One can consider formula (11) as giving the result of a mixture of pure states Rn in (5). Thus
the procedure of addition of impure states can be fulfilled as follows. First, one writes the sum
of impure states as a convex sum of orthogonal projectors and then carries out the purification
given in equation (7).

In this case, one gets the pure density operator for the result of ‘deformed’ addition of
two impure states ρ1 and ρ2 with probabilities p1 and p2 given by the following expression
which is a generalization of equation (11):

p1ρ1 ⊕ p2ρ2 =
∑
kj

√
ωkωj

RkP0Rj√
Tr(RkP0RjP0)

(12)

whereRk are the orthogonal eigenprojectors of the density operator andωk are the nonnegative
eigenvalues of the density operator, i.e.

(p1ρ1 + p2ρ2)Rk = ωkRk. (13)

There is no sum on k. The fiducial projector P0 is chosen to satisfy the condition P0Rk �= 0.
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If one has the addition of more than two impure states, i.e. the density operator of the
impure state has the form

∑N
s=1 psρs , the result of the ‘deformed’ addition rule has the same

form as equation (12), namely,
N∑
s=1

⊕psρs =
∑
kj

√
ωkωj

RkP0Rj√
Tr(RkP0RjP0)

(14)

where the eigenprojectors Rk and nonnegative eigenvalues ωk satisfy the equation(
N∑
s=1

psρs

)
Rk = ωkRk (no sum on k). (15)

Thus the purification procedure which is expressed by the deformed addition rule denoted
by the sign ⊕ on the left-hand side of equations (12) and (14) is reduced to obtaining
eigenvectors (eigenprojectors) and eigenvalues of the nonnegative density operator

∑
s psρs

and applying the ansatz with the fiducial projector P0 (P0Rk �= 0) to construct the nonlinear
expression on the right-hand side of equations (12) and (14). This expression provides the
purified density operator.

In the limit case where the initial density operators ρs are orthogonal projectors,
equation (14) is reduced to equation (7) with the obvious replacement ωk → pk. One
can point out that only one projector P0 is sufficient to provide (N − 1) independent
phase parameters in the case of addition of N orthogonal pure states. This projector must
have nonzero overlap with all added pure state projectors. In the case of addition of N
impure states, the number of independent phase parameters, which are contained in only one
fiducial projector P0, depends on the rank of the density operator

∑
s psρs and is one less

than the rank. For clarity, we point out that the obtained addition formula for impure density
operators assumes the existence of the fiducial projector. This existence is obvious from a
geometrical point of view, but the explicit finding of this fiducial projector for given density
operators is a different problem.

5. Symbols and their star-product

In quantum mechanics, observables are described by linear operators acting on the Hilbert
space of states. In order to consider observables as functions, we first review a general
construction [22] and provide general relations and properties of a map from operators
onto functions having in mind a map of the density operator onto a function such as a
Wigner distribution. Given a Hilbert space H and an operator Â acting on this space, let us
suppose that we have a set of operators Û(x) acting on H, where an n-dimensional vector
x = (x1, x2, . . . , xn) labels the particular operator in the set. We construct the c-number
function fÂ(x) (we call it the symbol of operator Â ) using the definition

fÂ(x) = Tr[ÂÛ(x)]. (16)

Let us suppose that there must exist a set of operators D̂(x) such that

Â =
∫
fÂ(x)D̂(x) dx. (17)

We will consider relations (16) and (17) as relations determining the invertible map from the
operator Â onto the function fÂ(x).

The product (star-product) of two functions fÂ(x) and fB̂(x) corresponding to two
operators Â and B̂ is defined by the relations

fÂB̂(x) = fÂ(x) ∗ fB̂(x) := Tr[ÂB̂Û (x)]. (18)
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Since the standard product of operators on a Hilbert space is an associative product,
formula (18) defines an associative product for the functions fÂ(x).

6. Superposition rule in terms of symbols of density operators

Using formulae (16) and (17), one can write a composition rule for two symbols fÂ(x) and
fB̂(x), which determines the star-product of these symbols bilinear in the two symbols,

fÂ(x) ∗ fB̂(x) =
∫
fÂ(x

′′)fB̂ (x
′)K(x′′,x′,x) dx′ dx′′. (19)

The kernel in the integral of (19) is determined by the trace of product of the basic operators,
which we use to construct the map

K(x′′,x′,x) = Tr[D̂(x′′)D̂(x′)Û(x)]. (20)

Formula (20) can be extended for the case of the star-product of N symbols of operators
Â1, Â2, . . . , ÂN . Thus one has

fÂ1
(x) ∗ fÂ2

(x) ∗ · · · ∗ fÂN (x)
=
∫
fÂ1
(x1)fÂ2

(x2) · · · fÂN (xN)K(x1,x2, . . . ,xN,x) dx1 dx2 · · · dxN (21)

where the kernel has the form [22]

K(x1,x2, . . . ,xN,x) = Tr[D̂(x1)D̂(x2) · · · D̂(xN)Û(x)]. (22)

The trace of an operator ÂN is determined by the kernel as follows:

Tr ÂN =
∫
fÂ(x1)fÂ(x2) · · ·fÂ(xN)Tr[D̂(x1)D̂(x2) · · · D̂(xN)] dx1 dx2 · · · dxN (23)

Tr(ÂB̂) =
∫
fÂ(x1)fB̂(x2)Tr[D̂(x1)D̂(x2)] dx1 dx2. (24)

When the operator Â is a density operator of a quantum state, formula (23) for N = 2
determines the purity parameter of the state.

Formulae (21) and (22) can be used to formulate the addition law of the density operators
of orthogonal pure states ρi as an addition law for their symbols fρi (x). In the case of
purification of the sum

∑
k pkρk of pure states ρk by means of a fiducial projector P0, one has

the following symbols:

fρ(x) for the purified density operator,
fρk (x) for the pure state with density operator ρk ,
f0(x) for the fiducial projector P0.

The formula describing the quantum interference in terms of symbols of the density
operators reads

fρ(x) =
∑
jk

√
pkpj

∫
fρk (x1)f0(x2)fρj (x3)K(x1,x2,x3,x) dx1 dx2 dx3√∫

fρk (x1)f0(x2)fρj (x3)f0(x4)k(x1,x2,x3,x4) dx1 dx2 dx3 dx4

(25)

where the kernel K(x1,x2,x3,x) is defined by equation (22) while the kernel
k(x1,x2,x3,x4), which determines the trace of the product of N operators (N = 4) in
terms of their symbols, reads

k(x1,x2, . . . ,xN) = Tr[D̂(x1)D̂(x2) · · · D̂(xN)]. (26)

In the case of purification of the sum of impure states (14), one has an analogous formula with
the replacement ρk → Rk and pk → ωk .
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7. Weyl symbol addition and interference in terms of Wigner–Moyal functions

In this section, we will consider a known example of Wigner distribution which is related
to the Heisenberg–Weyl-group representation. The interference can be described in terms of
Wigner functions using formula (25). The displacement operator

D̂(αx) = exp(αxâ
† − α∗

xâ) (27)

where

αx = x1 + ix2 α∗
x = x1 − ix2 (28)

and real numbers x1 and x2 are expressed in terms of position and momentum as

x1 = q√
2

x2 = p√
2

(29)

determines the basic operators defining the Weyl map. Thus, one has for the basic operators
of the map the following expressions [22]:

Û(x) = 2D̂(αx)(−1)â
†âD̂(−αx) (30)

D̂(x) = 2

π
D̂(αx)(−1)â

†âD̂(−αx). (31)

The operator (−1)â
†â is the parity operator, (−1)â

†â = P , with the matrix elements given in
the position (or momentum) representation by the formula

〈x|P̂ |y〉 = δ(x + y). (32)

The Weyl symbol of the density operator ρ is defined by (16) where we use operator (30) and
make the replacement f → W , which is the state Wigner function, and it reads

Wρ(α) = 2 Tr[ρD̂(α)(−1)â
†âD̂(−α)] (α ≡ αx).

To describe the star-product of Weyl symbols, we introduce a generalization of notation (29)

xk = (xk1, xk2) xk1 = qk√
2

xk2 = pk√
2
.

Then

αk = 1√
2
(qk + ipk) k = 1, 2, . . . , N.

The kernel of the star-product of (N − 1) Weyl symbols has the form

K(α1, α2, . . . , αN ) = Tr

[
Û(xN)

N−1∏
k=1

D̂(xk)

]
. (33)

The kernel can be rewritten in terms of the complex numbers αi (i = 1, 2, . . . , N) as [22]

K(α1, α2, . . . , αN ) = 2N−1

πN−1
exp



N−1∑
j>i

N−1∑
i=1

2
(
qj−i+2−Nαiα∗

j + qi−jαjα∗
i

)

+
N−1∑
i=1

2
(
q1−iαiα∗

N + qi+1−NαNα∗
i

) (34)

where q = −1.
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The kernel for the trace of the product of four operators reads

k(α1, α2, α3, α4) = 4

π3
δ(2)(α1 − α2 + α3 − α4) exp{−2[(α1α

∗
2 − α1α

∗
3 + α1α

∗
4

+ α2α
∗
3 − α2α

∗
4 + α3α

∗
4)− c.c.]}. (35)

Having the above kernels we can obtain the Weyl symbol of the pure density operator (which
we found by means of purification of a mixture of several states) by inserting the kernels and
the Wigner functions into (25). The explicit result for the addition of two Wigner functions
was given in [6] in a different form.

8. Symplectic tomograms and superposition principle

Now we consider the example of tomograms.
According to the general scheme, one can introduce for an operator Â the tomographic

symbol fÂ(x), where x = (x1, x2, x3) ≡ (X,µ, ν), which we denote here as wÂ(X,µ, ν)
depending on the position X and the parameters µ and ν of the reference frame [22],

wÂ(X,µ, ν) = Tr[ÂÛ(x)].

The operator Û(x) is given by

Û(x) ≡ Û(X,µ, ν) = δ(X − µq̂ − νp̂) = |X|δ
(

1 − µq̂

X
− νp̂

X

)
where q̂ and p̂ are the position and momentum operators.

The inverse transform will be of the form

Â =
∫
wÂ(X,µ, ν)D̂(X,µ, ν) dX dµ dν

where

D̂(x) ≡ D̂(X,µ, ν) = 1

2π
exp(iX − iνp̂ − iµq̂).

The kernel defining the star-product of two tomograms

K(x′′,x′,x) = Tr[D̂(X′′, µ′′, ν ′′)D̂(X′, µ′, ν ′)Û(X,µ, ν)]

reads [22]

K(X1, µ1, ν1,X2, µ2, ν2,Xµ, ν) = δ(µ(ν1 + ν2)− ν(µ1 + µ2))

4π2

× exp

[
i

2

(
(ν1µ2 − ν2µ1) + 2X1 + 2X2 − 2(ν1 + ν2)

ν
X

)]
.

The trace of the product of four basic operators, which provides the kernel to calculate the
denominator in the addition formula of density operators (25) reads

k(x1,x2, . . . ,xN) = Tr

[
N∏
k=1

D̂(Xk, µk, νk)

]
= (2π)1−Nδ

(
N∑
k=1

µk

)
δ

(
N∑
k=1

νk

)

× exp

{
i

(
N∑
k=1

Xk +
1

2

N∑
k<s=1

(νkµs − µkνs)

)}
N = 4. (36)

Having the above kernels we can obtain the tomogram of the pure density operator by inserting
the kernels into (25) and making there the replacementf → w. In a different form the explicit
result for the addition of tomograms was obtained in [6].
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9. Notion of entanglement

Another quantum-mechanical property related to the superposition principle of states in
bipartite and multipartite systems is entanglement. Let us have density operator ρAB of
composite system AB which has two subsystems A and B. This means that there exist
experimental possibilities for measuring the properties of the subsystem A and subsystem B.
The density operator ρAB determines two density operators of the subsystems

ρA = TrBρAB and ρB = TrAρAB.

Let us consider the tensor product of the two subsystem density operators

ρA×B = ρA ⊗ ρB.

There is a difference in the two density operators

RAB = ρAB − ρA ⊗ ρB.

This difference is a characteristic of entanglement. If the system is in the state ρAB , which
is disentangled, the operator RAB = 0. The numerical characteristic of entanglement is
described by nonzero matrix elements of the operator RAB . A basic independent (invariant)
characteristic of the operator RAB is the number

e = Tr
(
RABR

†
AB

)
. (37)

This number can be considered as a measure of entanglement. Since R†
AB = RAB one has

e = Tr
(
R2
AB

)
.

There are other numerical characteristics of entanglement such as traces of higher powers of
the matrix RAB

e(n) = Tr
(
Rn+1
AB

)
.

The state ρAB is characterized by the purity parameter

µAB = Trρ2
AB

and the state ρA×B has its own purity parameter

µA×B = µAµB

where

µA = Trρ2
A and µB = Trρ2

B.

Since

R2
AB = ρ2

AB + (ρA ⊗ ρB)
2 − ρABρA ⊗ ρB − ρA ⊗ ρBρAB (38)

one has

TrR2
AB = Tr ρ2

AB + Tr
(
ρ2
A ⊗ ρ2

B

)− 2 Tr(ρABρA ⊗ ρB). (39)

Thus we get the measure of entanglement in the form

e = µAB + µAµB − 2
√
µABµAµB cos θ. (40)

The last term on the right-hand side of (40) is determined as
√
µABµAµB cos θ = Tr(ρABρA × ρB).

For the pure state µAB = 1, one has µA = µB = µ (see the appendix) and it gives
e = 1 + µ2 − 2µ cos θ . The introduced angle θ and parameters µA,µB and µAB can be
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functionally dependent. In view of this, finding maxima or minima of the entanglement
measure needs to take into account this dependence.

In fact, the measure of entanglement (37) is defined using the notion of distance
between two density operators (see, e.g., [30]). The connection of distance with measure
of entanglement is natural and it was discussed, e.g., in [31–34]. In the present work, we use
the Hilbert–Schmidt distance as a measure of entanglement but the novelty of the suggested
measure of entanglement is related to the choice of the density operators being compared. We
use the distance between the system density operator and the tensor product of the partial traces
over the subsystem degrees of freedom. This characteristic is intrinsic because it is contained
in the state density operator only. The geometrical sense of the notion of the entanglement
measure can be clarified using an analogy with distance between the points on Euclidean
vectors |a−b|, where real vectors a and b describe the points. With this definition, a partially
separable system has a nonzero entanglement.

Each matrix can be considered as a complex vector. The standard scalar product of any
two vectors C and D can always be treated as

C · D =
∑
s

C∗
s Ds.

If one considers the matrix elements of the two matrices C and D as components of the vectors
C and D, one also has

C · D = Tr(DC†).

For Hermitian matrices C = C† and D = D†,

C · D = Tr(CD).

If one considers a density matrix as the vector, the purity parameter plays the role of the square
of the vector length, so one has for the purity parameter the inequality

0 < µ � 1.

The description of the matrix RAB as a vector makes it obvious that measure of entanglement
(37) coincides with the square of the vector length, which in turn is the difference of two other
vectors. This means that the length of the vectors under consideration, which correspond to
normalized density matrices, is less than unity. Thus, the geometrical interpretation of the
measure of entanglement means that angle θ in (40) is the angle between the two vectors. This
angle can depend on the length of the vectors determining the purity parameters of the system
and subsystems. The angle parameter is introduced only in order to illustrate the geometrical
picture of the entanglement measure under discussion.

10. Entanglement for arbitrary observables

Usually the notion of entanglement is applied for the density operator. Mathematically, the
construction of the measure of entanglement e given by (37) can be extended for arbitrary
observable Ô represented in the form of a sum of projectors,

Ô =
∑
n

anP̂ n

where the P̂ n are the eigenprojectors and an the eigenvalues of the observable Ô , i.e.

Ôp̂n = anP̂ n.

For a density operator, the eigenvalues are nonnegative numbers. For an arbitrary observable,
the eigenvalues are real numbers and they can take negative values. If one has a prescribed
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division of the system in terms of two subsystems A and B, the observable Ô which acts in
the Hilbert space of the system can be treated in the same manner as the density operator in
the previous section. Thus one can define the reduced observables

ÔA = TrBÔ ÔB = TrAÔ.

The tensor product of the observables

ÔA×B = ÔA ⊗ ÔB

acts in the Hilbert space of the system.
The correlations of two subsystems captured by the observable Ô can be connected with

a measure of entanglement as in the case of the density operator. We define the measure of
entanglement for the observable Ô as the number

e0 = Tr[(Ô − ÔA ⊗ ÔB)
2] = Tr

[
(Ô − ÔA ⊗ ÔB)

(
Ô† − Ô

†
A ⊗ Ô

†
B

)]
.

This number gives the invariant description of a ‘distance’ between two Hermitian operators
Ô and ÔA⊗ÔB in exactly the same manner as in the case of the distance between two density
operators.

Analogously, one can introduce positive parameters

µ0 =
∑
n

a2
n µ0A =

∑
k

a2
kA µ0B =

∑
α

a2
αB

where akA and aαB are the eigenvalues of the Hermitian matrices ÔA and ÔB , respectively.
So, formula (40) can be extended for an arbitrary observable in the form

e0 = µ0 + µ0Aµ0B − 2
√
µ0µ0Aµ0B cos θ

where we define cos θ using the same geometrical interpretation of the scalar product of two
vectors

√
µ0µ0Aµ0B cos θ = Tr(ÔÔA ⊗ ÔB).

Thus we introduced the notion of entanglement for other Hermitian observables than density
operators. Of course, the inequalities for purity parameters in the case of density operators are
not valid for other observables.

One can make a generalization introducing the measure of entanglement of the kth order
of an arbitrary observable to multipartite system AB · · ·C using the definition of measure

e
(k)

0 = Tr[(Ô − ÔA ⊗ ÔB ⊗ · · · ⊗ ÔC)
k] ÔA = TrB···CÔ, . . . k = 2, 3, . . . , N.

(41)

For even k, the above parameter is a nonnegative number. The measure can be normalized
using the factor µ−1

0 .

11. Example of two qubits

Let us consider a density matrix with unit trace for two spins in the basis |↑〉 and |↓〉 for the
first and second spins, correspondingly, i.e., in the basis in four-dimensional space

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉.
The Hermitian density matrix has a form

ρ =



ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44


 . (42)
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The density matrix ρA = TrBρ reads

ρA =
(
ρ11 + ρ22 ρ13 + ρ24

ρ31 + ρ42 ρ33 + ρ44

)
(43)

and the density matrix ρB = TrAρ reads

ρB =
(
ρ11 + ρ33 ρ12 + ρ34

ρ21 + ρ43 ρ22 + ρ44

)
. (44)

The tensor product of two matrices ρA and ρB has the form quadratic in matrix elements of
the matrix ρ

ρA ⊗ ρB =
∣∣∣∣(ρ11 + ρ22)ρB (ρ13 + ρ24)ρB

(ρ31 + ρ42)ρB (ρ33 + ρ44)ρB

∣∣∣∣ .
The purity parameter of the two-spin state (42) equals

µ =
4∑

i,k=1

|ρik|2. (45)

The purity parameters of the states (43) and (44) read

µA = |ρ11 + ρ22|2 + |ρ13 + ρ24|2 + |ρ31 + ρ41|2 + |ρ33 + ρ44|2 (46)

and

µB = |ρ11 + ρ33|2 + |ρ12 + ρ34|2 + |ρ21 + ρ43|2 + |ρ22 + ρ44|2. (47)

One can calculate the trace defining the angle between two vectors corresponding to the density
operators in the form

Tr(ρρA ⊗ ρB) = (ρ11 +ρ22)[ρ11(ρ11 + ρ33)+ρ12(ρ21 + ρ43)+ ρ21(ρ12 + ρ34)+ρ22(ρ22 + ρ44)]

+ (ρ31 + ρ42)[ρ13(ρ11 + ρ33) + ρ14(ρ21 + ρ43) + ρ23(ρ12 + ρ34)

+ ρ24(ρ22 + ρ44)] + (ρ13 +ρ24)[ρ31(ρ11 + ρ33)+ρ32(ρ21 + ρ43)+ρ41(ρ12 + ρ34)

+ ρ42(ρ22 + ρ44)] + (ρ33 + ρ44)[ρ33(ρ11 + ρ33) + ρ34(ρ21 + ρ43)

+ ρ43(ρ12 + ρ34) + ρ44(ρ22 + ρ44)]. (48)

Having expressions (40), (45)–(48) one can calculate the measure of entanglement for an
arbitrary density matrix of two spins. For example, in the case of a pure state

ρ = 1

2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 (49)

one has

µ = 1 µA = 1
2 µB = 1

2 . (50)

This provides the maximum entanglement of the state (49), i.e.

e = 3
4 . (51)

For a more general matrix of pure state of the form

ρ =




0 0 0 0
0 c2 sc 0
0 sc s2 0
0 0 0 0


 (52)

where c ≡ cosϕ and s ≡ sin ϕ, one gets

eϕ = 1

2
sin2 2ϕ

[
1 +

sin2 2ϕ

2

]
. (53)

The angle in (40) is determined by the angle ϕ of (53). For ϕ = 45◦, one has θ = 60◦.
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12. Distance and entanglement of Gaussian squeezed states

One can use the developed approach to study entanglement of two-mode squeezed Gaussian
states. The Wigner function of generic squeezed and correlated state ρ in n dimensions has
the form (h̄ = 1) [28]

W(Q) = N exp
[− 1

2

(
Q
)
�−1

(
Q
)]

N = (det�)−1/2 (54)

where Q = (p1, p2, . . . , pn, q1, q2, . . . , qn) and

Q = Q − 〈Q〉 (55)

with 〈Q〉 being the parameters describing means of the quadature components. The 2n × 2n
matrix � describes variances and covariances of the quadrature components. We present the
dispersion matrix in the form

� =
(
�1 �12

�t
12 �2

)
�−1 =

(
A B

Bt C

)
. (56)

We consider two subsystems with dimensions n1 and n2, with n1 + n2 = n. Let us suppose
that the system state has the parameters 〈Q〉 = 0 (squeezed vacuum in the case of pure states).
The normalization constant N in (54) is determined by the matrix � due to the condition∫

W(Q)
dQ
(2π)n

= 1. (57)

The purity parameter of the Gaussian state of the system equals [28]

µ = Tr ρ2 =
∫
W 2(Q)

dQn

(2π)
= 2−n(det�)−1/2. (58)

Integrals (57) and (58) can be calculated using the formula for an n-dimensional Gaussian
integral ∫

e−xax+bx dx = πn/2√
det a

exp

(
1

4
ba−1b

)
. (59)

The Wigner function of the subsystem state 1 ρ1, which is denoted asW1(Q1), is given by the
relation

W1(Q1) =
∫
W(Q)

dQ2

(2π)n2
(60)

and the Wigner function of the subsystem state 2 ρ2 is given by the analogous relation

W2(Q2) =
∫
W(Q)

dQ1

(2π)n1
. (61)

Both integrals are Gaussian. Due to this, one has

W1(Q1) = N1 exp
[− 1

2

(
Q1σ

−1
1 Q1

)]
N1 = (detσ1)

−1/2 (62)

W2(Q2) = N2 exp
[− 1

2

(
Q2σ

−1
2 Q2

)]
N2 = (detσ2)

−1/2 (63)

where

σ−1
1 = A− BC−1Bt σ−1

2 = C − BtA−1B.
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The purity parameters of the states of the subsystem read

µ1 = 2−n1(det σ1)
−1/2 µ2 = 2−n2(det σ2)

−1/2. (64)

In the case det� = (1/4)n, µ1 = µ2.
The normalization constants N1 and N2 are functions of initial dispersion matrix �. The

Wigner function of the state ρ1 ⊗ ρ2 has the product form

W12(Q) = W1(Q1)W2(Q2). (65)

This form is also Gaussian

W12(Q) = N12 exp

[
−1

2
(Qσ−1Q)

]
N12 = N1N2 σ =

(
σ1 0
0 σ2

)
. (66)

To calculate the introduced measure of entanglement, one has to calculate the fidelity
t = Tr(ρρ1 ⊗ ρ2), which is expressed in terms of Wigner functions by the integral

t =
∫

dQ
(2π)n

W(Q)W12(Q). (67)

The integral is Gaussian again with the dispersion parameters (σ +�). So one has

t = (det(� + σ))−1/2.

This trace determines the term with cos θ in the expression for entanglement of the squeezed
Gaussian state.

Thus, the measure of entanglement of the squeezed Gaussian state reads

eG = 2−n(det�)−1/2 + 2−n(det σ)−1/2 − 2(det(� + σ))−1/2.

It is determined by the quadrature dispersion matrix of the composite system, which is
characteristic of Gaussians. If the pure state is squeezed but not correlated [26, 27],
entanglement is absent. For entanglement, one needs the correlation of quadratures in the
initial pure states4.

13. Purification of separable density matrix

In this section, we consider the procedure of purification of a mixed density matrix. The
density matrix of a composite system is said to be simply separable if it has the form

ρAB = ρA ⊗ ρB (68)

where ρA = TrBρAB and ρB = TrAρAB . Such a matrix can be pure if and only if ρA and ρB
are pure and hence ρAB , ρA and ρB are projectors in the appropriate spaces. Such a pure state
of the composite system is not entangled. More generally, a density matrix ρAB is said to be
separable if

ρAB =
∑
n

pnρnA ⊗ ρnB
∑
n

pn = 1 pn � 0. (69)

In this case,

ρA =
∑
n

pnρnA and ρB =
∑
n

pnρnB.

4 It is worth noting that another measure of entanglement based on the cross covariances of quadrature components
of entangled modes was introduced in [35].
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Clearly if n � 2, the density matrix ρAB is not pure. For n = 1 the matrix ρAB is not pure
unless ρA and ρB are one-dimensional projectors. Since ρnA and ρnB are density matrices,
they are convex linear sums of projectors

ρnA =
∑
j

pnj
A
nj and ρnB =

∑
k

qnk
B
nk (70)

where pnj and qnk are nonnegative numbers,
∑

j pnj = ∑k qnk = 1. Thus ρAB is the convex
sum of projectors

ρAB =
∑
n,j,k

pnj qnkunjvnku
†
nj v

†
nk. (71)

Note that these projectors are not all mutually orthogonal and ρAB is a mixture with weight
pnjqnk for all n, j, k. The density matrices

ρAB(n, j, k) = unjvnku
†
njv

†
nk (72)

(there is no sum) are not mutually orthogonal pure state projectors, except for n = 1. So, once
the eigenvectors (eigenrays) are given, we can construct the density matrix ofAB as a convex
sum of projectors. For n = 1, what does ρAB contain that is not contained in ρA ⊗ ρB? In this
case, it is a set of phase diferences between various eigenvectors that make up ρAB . There are
rank(ρA) × rank(ρB) phases and hence one less phase difference. All this is very similar to
the purification of mixed states. We write

ρA =
∑
j

pj
A
j ρB =

∑
k

qk
B
k (73)

and hence by hypothesis

ρAB = ρA ⊗ ρB =
∑
jk

pj qk
A
j ⊗B

k . (74)

So, for purification, we adopt the ansatz given earlier (we omit the Kronecker product symbol)

ρ̃AB =
∑
jkj ′k′

(pjqkpj ′qk′)1/2
A
j 

B
k 

ABA
j ′

B
k′√

Tr
(
A
j 

B
k 

ABA
j ′B

k′AB

) . (75)

This ρ̃AB is a pure matrix with probability weights pjqk for the projectors A
j 

B
k and the

suitable phase differences which number rank(ρA) × rank(ρB) − 1. It is essential to choose
AB such that Tr

(
ABA

j 
B
k

) �= 0 for all j, k. But the density matrix so constructed will not
lead to ρA and ρB as partial traces.

For a more general case of n � 2, we have the problem of rediagonalizing

ρA =
∑
n,j

pnj
A
nj ρB =

∑
n,k

qnk
B
nk. (76)

Once this is done, we proceed as in the simple separate case (n = 1) discussed above.

14. Entanglement and straddling of fiducial projectors

The fiducial projector in the purification protocol generates the relative phases between the
(two or more) density matrices for pure states which have been ‘superposed’. Such an
operator is a ‘phase correlator’. The Hermitian fiducial projector and the projectors which are
being superposed are all Hermitian, yet relative phases are introduced. Given two or more
Hermitian matrices one can generate the Bargman phase from their product. For this to occur,
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the operators cannot all commute (phase (ABC) �= 0). Simple examples may be provided by
the Pauli matrices (or Dirac matrices), in our case, the phase difference between amplitudes
is generated by the overlap of the fiducial matrix with the respective density matrices. Since
we do a normalization in (12) only the phase of the overlap survives. There is a source of the
phase interference introduced in our composition law (12). The question naturally arises—can
we choose the fiducial projector P0 so as to produce any set of phase differences? The answer
is affirmative but not unique.

The fiducial projector must straddle the pure states which are added, that is, it must have
nonzero overlap with each of them. (It may or may not have overlap with other states.)
Following up on this notion we find that the fiducial projector which restores a fully entangled
pure state of a composite system straddles the eigenprojectors of the individual rays which
are direct products of pure density matrices. (This is for separable systems, otherwise we
get some direct product pure states and some fully entangled pure states.) This straddling
implies that automatically the fiducial projector is a ‘nonlocal’ operator acting coherently on
the subsystems. Since it is also a projector, it follows that this projector is a fully entangled
pure state. Only such an entangled projector can restore full entanglement. Fully entangled
operators can be multiplied by each other or added together to obtain fully entangled operators,
but they will not be projectors of rank 1. This entanglement (and phase coherence) can be
inherent in operators as well as in states.

15. Conclusions

We presented an intrinsic approach to different quantum phenomena which are entanglement
and interference. The approach is intrinsic because it points out the unique basis for
both phenomena which is the superposition principle of quantum states. But to use this
superposition principle in the generic case of mixed states, one needs the addition formula
for density operators. The discussed measure of entanglement is intrinsically connected with
the given state of a composite system because it is determined completely by partial traces
of the state density operator and by the deviation of the density operator from the tensor
product of the partial traces. Thus, because the entanglement is the property related to the
state superpositions (expressed in terms of a new addition rule of density operators using a
fiducial projector) the fiducial projector becomes a useful tool for treating both phenomena—
interference and entanglement.

To conclude, we point out new results of the paper.
The nonlinear addition rule for impure density matrices, which results in the pure density

matrix given in (12) and (14), is a new purification procedure. The addition rule formula (25)
for symbols of density operators of any kind (including Wigner distribution, tomograms, etc)
is another new result of our consideration.

The notion of the measure of entanglement of arbitrary order for bipartite and multipartite
systems for an arbitrary observable given by (41) is a new aspect of entanglement suggested
in our study. As a partial case, the measure introduced contains the description of measure
of entanglement of a density operator for bipartite system given in (40). The measure of
entanglement is related directly to the intrinsic properties of the density operator of a composite
system.
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Appendix 1. Partial density matrices for the pure state of a composite system

Let us consider the pure state of a composite system which has two subsystems A and B. The
pure state is described by a vector of the form

ψ =
N∑
i=1

M∑
α=1

Ciαϕiχα (77)

where N is the dimension of the subsystem A, M is the dimension of the subsystem B, and the
orthogonal vectors ϕi (i = 1, . . . , N) and χα (α = 1, . . . ,M) form a basis in Hilbert spaces
of the subsystem states.

The density operator of the pure state which corresponds to the decomposition (77) of the
state vector has the form

ρAB = ψψ† =
N∑

i,j=1

M∑
α,β=1

CiαC
∗
jβϕiϕ

†
jχαχ

†
β. (78)

The density matrix of the A-subsystem state in the chosen basis has the matrix elements
expressed in terms of decomposition coefficients

(ρA)ij =
M∑
α=1

CiαC
∗
jα. (79)

The density matrix of the B-subsystem state in the chosen basis has the matrix elements

(ρB)αβ =
N∑
i=1

CiαC
∗
iβ . (80)

Both density matrices ρA and ρB are nonnegative Hermitian matrices and Tr ρA = Tr ρB = 1.
Let us calculate the parameters

µ(A)n = Tr(ρA)n µ(B)n = Tr(ρB)n (81)

for arbitrary integer n.
One can easily see that

µ(A)n = µ(B)n . (82)

In fact,

µ(A)n =
N∑

i1,i2,...,iM=1

M∑
α1,α2,...,αn=1

Ci1α1C
∗
i2α1
Ci2α2C

∗
i3α2

· · ·Cin−1αn−1C
∗
inαn−1

CinαnC
∗
i1αn

(83)

and

µ(B)n =
N∑

i1,i2,...,in=1

M∑
α1,α2,...,αn=1

Ci1α1C
∗
i1α2
Ci2α2C

∗
i2α3

· · ·Cin−1αn−1C
∗
in−1αn

CinαnC
∗
inα1
. (84)
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The terms without a star are the same in both expressions (83) and (84). These terms are
invariant with respect to arbitrary permutations

1, 2, . . . , n → s1, s2, . . . , sn.

The terms with a star look different in (83) and (84), but since both sums (83) and (84) are
invariant with respect to arbitrary permutations, let us make the particular permutation

1, 2, . . . , n− 1, n → 2, 3, . . . n, 1

in sum (84). The terms without a star are invariant and the terms with a star in (84) after
permutation coincide with the terms with a star in (83). This proves equality (82) which means
that the eigenvalues and rank of the matrices ρA and ρB are the same. It is clear that the proof
can be extended to multipartite composite system AB · · ·C. Thus we get the following result.
Given a pure state of a multipartite quantum system ρAB···C , the eigenvalues and ranks of the
density matrices ρA, ρB, . . . , ρC are equal.
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